== RUTRONIH

Decoding SENT . wws. ELECTRONICS WORLDWIDE

Image 1: The TLE4998S4 soldered to the STMB8S-Discovery Board. Solder bridge
SB3 has to be closed = soldered.

SENT: Single Edge Nibble Transmission

The unidirectional data transmission SENT, Single Edge Nibble Transmission, has
been developed to connect high-resolution sensors to electronic control units in the
automotive environment. The connecting cable carries three wires: power supply,
ground and data. The data is digitally coded in the duration between two adjacent
negative edges of the data signal. Data is coded in nibbles i.e. 4 bits.

The benefits of SENT-coding are:

e Digitizing of the signal is located near the point of measurement in the sensor.
This increases noise immunity.
Simple galvanical isolation possible with optocoupler.
CRC generated in the sensor to verify error free data transmission.

To reconstruct the measurement value it is necessary to measure the time between
the negative edges. This is a typical task for a capture timer.

Every data frame starts with a syncfield of known duration. This text considers
Infineon's Hall-sensor TLE4998 whose syncfield is 168us long. A microcontroller with
a compare timer can be used to measure this interval. The measured value is

© 2010-2015, Rutronik Elektronische Bauelemente GmbH 23. June 2015
No warranty whatsoever. This text contains errors. You must not use the content or part of it in a real application.
Author: Ralf Hickl, all rights reserved

= RUTRONIR

Decoding SENT o we. ELECTRONICS WORLDWIDE
consequently taken as a timing reference when the durations of the following data
nibbles are evaluated.

Il g W Pos: 280.0us _CURSOR

168.0,us
5:952kHz

‘IMma -

Cursor 1
-24.00 us

Cursor 2
144.0 us

CHT 200 i I |

st
m il Iuiliulll

Image2: A dataframe on the screen.

The intervals between two negative edges are as follows:
The factory setting of TLE4998S for one LSB-time is 3us. The interval for one nibble
consists of an offset time of 36us + the value of nibble x 3ps.

The time durations for one nibble range from 36us for data value 0 up to 36us + 3us
x 15 = 81ps for data value 15.

The syncfield is followed by a total of nibbles: a status nibble, 6 data nibbles and a
CRC nibble.

The 6 data nibbles are assembled to two 12-bit wide data words, DW1 and DW2. The
transmission uses Most Significant Nibble first.

TLE4998S uses the first 4 data nibbles to code the value of the magnetic field. The
last two data nibbles are used for the temperature value.

Timer Selection

One can see from the above that 1LSB of a data nibble is equivalent to a duration of
3us. The longest interval that we can expect between two negative edges is168us x
125% = 210ps. This already includes a tolerance margin of +25%.

© 2010-2015, Rutronik Elektronische Bauelemente GmbH 23. June 2015
No warranty whatsoever. This text contains errors. You must not use the content or part of it in a real application.
Author: Ralf Hickl, all rights reserved

i

Decoding SENT

What we need to measure this is a simple free running 8-bit timer with capture
functionality and sensitivity on negative edges.

For our lab experiment we use an 8-bit microcontroller from STMicroelectronics. With
the TIM1 the STM8 features a 16-bit timer with capture register whose input pin is
located comfortably near the power supply pins of header CN2 of the STM8S-
Discovery board. All other timers TIM2, 3 or 5 are suited equally well.

To demonstrate that SENT can be decoded with 8-bit wide timers we only use the
lower byte of the capture register of the 16-bit timer TIM1.

We set the prescaler of TIM1 in a way that the clock period is one third of the LSB
time, that is 753 x 3us = 1us. The input clock frequency of the timer is now 1MHz.

When a pulse width is measured with a timer whose clock is asynchronous to the
pulse then a systematic error of +/- 1fclk has to be considered. With the timerclock
fclk = 1MHz we can expect the following intervals for the values of nibbles:

Result Timer Capture:
clocks min clocks max
Value Nibble Interval in ps

0 36 35 37
1 39 38 40
2 42 41 43
3 45 44 46
4 48 47 49
5 51 50 52
6 54 53 55
7 57 56 58
8 60 59 61
9 63 62 64
10 66 65 67
11 69 68 70
12 72 71 73
13 75 74 76
14 78 77 79
15 81 80 82

Timing Reference

Similar to LIN the data bytes are preceeded by a syncfield. With the TLE4998S the
syncfield is 168us long. The duration of this syncfield is measured and used as a
reference for the bit-timing of the following data nibbles.

Calculating data Nibbles

The syncfield is followed by 8 data nibbles. The measured duration of a data field is
corrected by the reference time of the sync field and then used as an index to a table
with the nibble values.

© 2010-2015, Rutronik Elektronische Bauelemente GmbH 23. June 2015
No warranty whatsoever. This text contains errors. You must not use the content or part of it in a real application.
Author: Ralf Hickl, all rights reserved

el

dauer = ((ul6) (168*dauer + (dauer_sync/2)))/((ul6)dauer_sync) - 35;

Decoding SENT

In an 8-bit microcontroller divisions can take quite some processing time. To avoid
one division we spread the lookup table by repeating the nibble values three times.

O’ l’l’l’ 2’2’2’ 3’3’3’ 4’4’4’ 5’5’5’ 6’6’6’ 7’7’7’

uc8 TLookup[] = {0,0,0,
8,8,8, 9,9,9, 10,10,10, 11,111,111, 12,12,12, 13,13,13, 14,14,14,

15,15,15};

Now the variable ,dauer” can be used as an index to the TLookup table with 48
entries. The value of a nibble computes to

nibble[nibble_counter++] = * (TLookup+dauer);.

Cyclic Redundancy Check

After reception oft he data nibbles a CRC is calculated and compared to the
expected value. We used the original algorithm from the TLE4998S manual. In case
of a CRC error the LED on the STM8S-Discovery is lit as fault indication.

Received Data

The received data is stored in the 8 byte long array nibble[] and then transfered tot he
global variables Datenwort1 and Datenwort2.

Damit Datenkonsistenz gewahrleistet ist muss ein Hauptprogramm Interrupts fr die
Dauer des Lesens dieser beiden Werte sperren.

Conclusion
Decoding SENT is feasible with an 8-bit microcontroller. Essential peripheral is a free
running 8-bit timer with input capture feature.

Literature

TLE4998S3 TLE4998S4 Datasheet V1.0, July 2008

Infineon Applikationsschrift AP1615410, SENT Decoder for XC2000
http://www.micronas.com/en/automotive_and_industrial_products/by_function/hal_28
30/product_information/index.html

Anex
Listing of Initialisation and Timer Capture Interrupt Service Routine

#include <main.h>
#include <SENT.h>
#include <stm8s_TIM1.h>
#include <stm8s_gpio.h>

#define warten_auf_sync 0
#define nibble_capture 1

// public variables
volatile ul6 Datenwortl, Datenwort2; // die empfangenden Datenworte
u8 feld[128];

// private variables
u8 nibble[8]; // status, 2 x nibbles 1..3, crc
u8 nibble_counter;

© 2010-2015, Rutronik Elektronische Bauelemente GmbH 23. June 2015
No warranty whatsoever. This text contains errors. You must not use the content or part of it in a real application.
Author: Ralf Hickl, all rights reserved

== RUTRONIH

Decoding SENT .wws ELECTRONICS WORLDWIDE

u8 CheckSum, 1i;

uc8 CRCLookup([l6] = {0, 13, 7, 10, 14, 3, 9, 4, 1, 12, 6, 11, 15, 2, 8, 5};
uc8 TLookup[] = {O0,0,0, 1,1,1, 2,2,2, 3,3,3, 4,4,4, 5,5,5, 6,6,6, 7,7,7,
8,8,8, 9,9,9, 10,10,10, 11,211,111, 12,12,12, 13,13,13, 14,14,14, 15,15,15};

void SENT_init (void)
{
us i;
nibble_counter = 0;
// initialisiere Datenfeld zu Null
for (i=0; 1i<8; i++)
{

nibble[i] = 0;
}

GPIO_Init (GPIOC, GPIO_PIN_1, GPIO_MODE_IN_PU_NO_IT); // Port Cl ist inp capt.

TIM1->PSCRL = 15; // 16 / 16 MHz = 1MHz Timer Takt
TIM1->CCMR1 = 0x11; // filtering and TI1FP1 as trigger input
TIM1->CCER1 = 0x02; // falling edge, CCl disable

TIM1->CCER1 = 0x03; // falling edge, CCl enable

TIM1->IER = 0x02; // IRQ durch CC1l

TIM1->CR1 = 0x01; // Counter Enable

}

// Die Capture Interrupt Service Routine

@far @interrupt void SENT_Timer_CC1 (void) // Negative Edge Detect
{

u8 dauer; // dauer des aktuellen Intervalls

static u8 dauer_sync; // dauer des Sync Intervalls

static u8 vorheriger = 0; // vorheriger Capture Wert
static u8 sent_status = warten_auf_sync;
static u8 index = 0;

// Zeitdifferenz zwischen zwei negativen Flanken errechnenn
dauer = TIM1->CCR1L - vorheriger; // GetCapture CCl Low Byte, clears Interrupt flag
vorheriger = TIM1->CCR1L;

switch (sent_status)
{
case warten_auf_sync:
{
// Syncpuls empfangen ? Auf Syncpulsldnge 168us testen
if ((dauer > (u8) (0.75*168)) && (dauer < (u8) (1.25*168))) // Sync length in ps +/- 25%
// Ja, Syncpuls empfangen
{
// Datenzdhler und Fehlerspeicher zuriicksetzen
dauer_sync = dauer;

nibble_counter = 0;
sent_status = nibble_capture;
}
}
break;

// Nein, kein Syncpuls sondern Datennibble
case nibble_capture:
{
// gemessenen Wert skalieren und Versatz abziehen
dauer = ((ulé6) (168*dauer + (dauer_sync/2)))/((ul6)dauer_sync) - 35; // [dauer] = lus

if (dauer <= 47)

{

nibble[nibble_counter++] = * (TLookup+dauer) ;
}
else
{
sent_status = warten_auf_sync;
GPIO_WriteLow (GPIOD, LED1_PIN); // LED an
break;
}
© 2010-2015, Rutronik Elektronische Bauelemente GmbH 23. June 2015

No warranty whatsoever. This text contains errors. You must not use the content or part of it in a real application.
Author: Ralf Hickl, all rights reserved

Decoding SENT

// CRC Calculation and Check, Datenexport
if (nibble_counter >= 8)
{

CheckSum = 5;

nibble_counter = 0;

sent_status = warten_auf_sync;

for (i=0; i<7; 1i++)
{
CheckSum = CheckSum » nibble[i];
CheckSum = CRCLookup[CheckSum];
}

55| RUTRONIK

ELECTRONICS WORLDWIDE

if (CheckSum == nibble[7]) // errechnete Checksumme = lbertragene Checksumme ?
{
Datenwortl = ((ul6)nibble[1])<<8 | (ul6) (nibble[2]<<4 | nibble[3]);
Datenwort2 = ((ul6)nibble[4])<<8 | (ul6) (nibble[5]<<4 | nibble[6]);

GPIO_WriteHigh (GPIOD, LED1_PIN); // LED aus

}

else
{

GPIO_WriteLow (GPIOD, LED1_PIN); // LED an,

}
}
} // of case (nibbel_capture)
} // of switch (sent_status)

© 2010-2015, Rutronik Elektronische Bauelemente GmbH

Fehlermeldung

23. June 2015

No warranty whatsoever. This text contains errors. You must not use the content or part of it in a real application.

Author: Ralf Hickl, all rights reserved

